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1. Abstract 
 
The BitRobot Network whitepaper proposes a subnet-based architecture designed for 
distributed robotic work and collaboration. Key components include Verifiable Robotic Work 
(VRW) for robotic task definition and verification, Equipment Node Tokens (ENT) for 
equipment ownership and network access, and Subnets as the operational layer for task 
execution. Subnets are managed by Subnet Owners, who oversee their operation; Subnet 
Validators, who verify task completion; and Subnet Contributors, who supply equipment and 
resources. The economic model aims to align incentives across participants and facilitates 
seamless coordination. This framework enables the aggregation of critical resources, with 
the aim of driving innovation and progress in the field of Embodied AI. 
 

2. Introduction 

The arms race for Artificial General Intelligence (AGI) is in full motion - with companies and 
governments racing to acquire the data, compute and talent required to create the most 
performant frontier models. Given the pace of innovation for AI in the digital context (e.g. for 
text, images, and videos), there are high hopes that a similar step change in growth is 
around the corner for the world of robotics. This optimism is bolstered by momentum across 
several critical trends: 
 
Transformers scaling across modalities: The transformer architecture [1] has proven 
versatile in its ability to scale both in quantity, with large amounts of data and compute, and 
scope, across a range of modalities (e.g. text, images, and videos) - leading to a single 
unified model that works across multimodal domains (e.g. VLMs [2]). Robotics data, when 
thought of as transformer tokens, can fit within this same architecture, and therefore should 
receive scaling benefits when combined with other modalities (e.g. VLAs [3]).  
 
Learning from demonstrations: Human teleoperated demonstrations (e.g. techniques like 
behavioral cloning, imitation learning, offline reinforcement learning, etc) have begun to 
show real promise. Tasks that the field has previously struggled with [4, 18] (e.g. clothes 
folding) are starting to see positive momentum - and if scaled may help solve for 
generalization of challenging domains (e.g. dexterous manipulation). 
 
Advancements in simulation: Simulations have evolved substantially in certain domains 
(e.g. locomotion), where policies trained in simulations can often transfer zero-shot to 
real-world embodiments such as quadrupeds [5] and drones [6]. The rise of generative AI, 
the increasing number of realistic world models [7, 8, 9] and the proliferation of physics 
engine toolings [10, 11, 12] all point to the potential for using simulations to accelerate 
progress by building a more robust foundation for models. . 
 
Learning from videos: Web-scale videos also point towards a rich, largely untapped, 
reservoir of training data that can help advance Embodied AI. In particular, human videos, 
especially those filmed with ego-centric views, show promise for humanoids and bimanual 
robotic arms [13, 14]. Meanwhile, progress is also being made where human videos may be 
closing the gap with labor-intensive teleoperated robotic data [15].  



 

 
Learning from cross embodiment: Increasing research evidence indicates that there may 
be significant positive learning transfer when Embodied AI models are trained from a diverse 
range of robotic embodiments. This suggests that the absolute quantity of data required may 
be substantially reduced and that the resulting models may be more generalizable if the 
training datasets come from a wide array of robot types [16, 17]. 
 
Advancements in robotic hardware: The maturity of adjacent industries (e.g. 
smartphones, EVs, semiconductor chips) translates to strong supply chains and cheap 
components for inputs to robotic systems (e.g. actuators, cameras, GPS, IoT sensors). For 
certain types of robots (e.g. consumer-grade sidewalk robots, robotic arms, quadrupeds, 
etc), this means affordable hardware that can be distributed at scale at consumer price 
points. In parallel, there are increased innovations on new hardware designs, ranging from 
tendon-driven mechanics, pneumatics and hydraulic-based actuations and various new 
touch/tactile sensors. 
 
 

3. Problem Definition  
Despite the momentum described above, Embodied AI still faces many real-world 
constraints that make scaling of physical intelligence a significant bottleneck in the pursuit of 
true AGI.  

3.1 Data Challenges 
Below we describe the challenges facing the three main types of robotic data (synthetic data, 
real-world video data, and teleoperation data) needed for improving Embodied AI.  
 
Sim-to-real gap: Despite its success in certain subfields, synthetic data has had challenges 
transferring zero-shot in real world settings for many other robotic tasks (e.g. in-the-wild 
robotic navigation, robotic manipulation with deformable objects). While simulations can 
drastically speed up the creation of training scenarios, the challenge is in focusing the 
search space to the long tail of edge cases that are actually relevant in the real world.  
 
Embodiment gap: Real-world video data, while a promising accelerant to Embodied AI 
research, suffer from the embodiment gap. Video data lacks precise information about 
physical presence and contextual awareness, making it difficult to build an AI that can 
replicate the exact responses a human might have. For example, thousands of video hours 
of Lionel Messi playing football can build a basic foundation, but lacks information about his 
specific body, data processing, and sensory inputs - making it challenging to exactly 
replicate his actual decision making and execution on the field.  
 
Unconscious-to-conscious gap: Unlike other modalities (e.g. text) which are available at 
scale on the public internet, teleoperation data, collected in real world settings capturing 
human action inputs as a response to external events, requires costly coordination and 
investment of both physical hardware and human man-hours to produce. As a result, while a 



 

promising data source for Embodied AI models, very few large-scale teleoperation datasets 
naturally exist [19].  
 
Critically, while many robotics researchers agree that these are the primary data bottlenecks 
to solving Embodied AI, there is a lack of consensus about which challenge (or combination 
of challenges) are the most pressing to solve first. 
​

3.2 Resource Challenges 
Furthermore, while robotics data remains a significant bottleneck, real-world evaluations and 
resource asymmetries may prove to be an even larger point of friction to the pace of 
Embodied AI innovations. 
 
Lack of hardware for real-world evaluations: For Embodied AI, the only way to evaluate a 
new model is to observe how the model fares in real world settings. Witnessing failure cases 
(e.g. a self-driving car driving into a lamp post) is critical in understanding the limits to what a 
model can do - and as the model improves, the rate of failure is only observable with 
large-scale fleets of robots. As a result, the ability for researchers to evaluate their own 
models is rate limited, without access to large amounts of robots to which to deploy their 
models. 
 
Resource distribution asymmetry: While a few large corporate labs are able to make 
substantial progress (given they have access to dataset flywheels, evaluation platforms, and 
compute, storage and bandwidth) - large pools of researchers (in academia or early-stage 
startups) and hardware providers are unable to iterate at the same pace. This points to a 
worrying trend of significant concentration of scientific progress in just a handful of entities. 
 
Below is an illustration of the asymmetry of access to various resources amongst the various 
entities. 

 

Fig 1: Rough mapping of resource access for key players in the Embodied AI landscape.  
 



 

4. The BitRobot Network: Design and Protocol 

4.1 Overview of the BitRobot Network 
In response to the challenges listed above, we present the BitRobot Network, a modular 
network of robotic subnets, each generating valuable resources, to accelerate Embodied AI 
and robotics innovation.  

 
 
Fig 2: Contribution and Compensation Flows for the BitRobot Network. Note: Compensation flows from Subnets 

to their Contributors are Subnet defined and not shown. ​
 

​
In the BitRobot Network, subnets can be formed to solve for resource gaps on the path to 
Embodied AI. This can range from aggregating hardware (e.g. fleets of robots for massively 
parallelized evaluation of new AI models) or human labor (e.g. teleoperators to control 
various robots) to more sophisticated coordination among multiple resources (e.g. 
researchers testing latest models on real world robot fleets while training on GPUs provided 
by compute providers). By decentralizing resource aggregation, BitRobot can leapfrog the 
resources that any individual corporate lab might amass on its own - and democratize 
access across the full Embodied AI community.  
 
The subnet structure allows for permissionless resource formation and experimentation - 
while aligning all participants around a shared economy and outcome.  

4.2 Key Components of the BitRobot Network 

The BitRobot Network is built around the following components:​
​
Verifiable Robotic Work (VRW): The Verifiable Robotic Work (VRW) is a quantifiable and 



 

verifiable measure of any robotic work that is deemed useful to help advance Embodied AI. 
This may include work done collecting data in the real world (e.g. the total distance driven by 
sidewalk robots, the difficulty scores of these sidewalk robot drives, etc) or in simulation (e.g. 
the number of scenarios generated for robotic arms that are tasked to fold clothes, the 
quality scores of such generated scenes, etc). VRW may also include the work done in 
creating Embodied AI models and evaluating them in either real-world settings or simulation 
environments. Finally, different types of Subnet Contributors may have different VRW even 
within the same Subnet (e.g. teleoperator based on duration of operating robots, robot 
keepers based on robot online hours, etc).  

Embodied Node Token (ENT): The Embodied Node Token (ENT) is a unique identifier 
within the system, designed to serve as the digital twin of a physical robot. Represented as 
an NFT, the ENT ensures a unique identity for each robot in the BitRobot Network. Each 
ENT requires collateral to receive on-chain payments, which can be used to enforce 
accountability and incentivize compliance within the system. The ENT also functions as the 
conduit for payments for robot owners. 

Subnets: A BitRobot Subnet represents clusters of resources creating value for the BitRobot 
Network. Subnets can range in scope: from hardware acquisition, to creation of novel 
datasets, to creation of new AI models, to competitions. Subnets can work on a diverse 
range of tasks (defined by each Subnet’s Verifiable Robotic Work) and embodiments, 
resulting in a wide variety of outputs, ranging from real-world datasets, synthetic datasets, to 
new AI models, physical hardware fleet, etc. Within Subnets there are several roles: Subnet 
Owners, Subnet Validators, and Subnet contributors - though many participants may play 
multiple roles and work across multiple subnets. Subnets can earn income via direct 
payments (e.g. stablecoins for renting out a fleet of robots), by network emissions, or both. 

Subnet Owners: Subnet Owners represent the creators of a subnet. Subnet owners must 
define the VRW for their subnet, the type of subnet outputs (e.g. dataset, AI models, 
cryptographic proofs), subnet validation, and the percent of subnet rewards to be distributed 
to the various participants in the Subnet. Subnet Owners can be individuals, groups of 
people, or protocols. 
 
Subnet Validators: Subnet Validators evaluate the output of Subnet Contributors against 
the defined VRW for the subnet. Internal to the subnet, the scores assigned by Subnet 
Validators determine how incoming subnet rewards are split among Subnet Contributors. 
Subnets can have as few or as many validators as the Subnet Owners determine, and 
Subnet Validators may be Subnet Owners themselves. 
 
Subnet Contributors: Subnet Contributors provide the necessary inputs for a subnet to 
create a useful output. Each subnet may have multiple types of contributors - ranging from 
researchers, to teleoperators, to robot manufacturers, and many more. Given each Subnet 
may be focused on a different outcome, it is expected that each subnet will have a different 
set of contributor types based on the requirements for their tasks.​
 



 

 
Fig 3: Illustrative map of possible Subnets and their corresponding Contributors and Outputs 

4.3 Life cycles of Subnets and Contributors 

4.3.1 Subnets 
Subnets are instantiated by their owners, and are required to define several parameters 
including: reward splits, VRW definitions, and validation conditions. Subnets can be 
constructed to aggregate resources (e.g. humanoid robot pools for hire), to create novel 
datasets (e.g. urban navigation data), or to simply evaluate models.​
​
Subnets can also be defined to be private or public - private subnets are not eligible for 
emissions, while public subnets are eligible. Private subnets are consumers of the 
frameworks and resources of the BitRobot Network, while public subnets may both be 
consumers and contributors (see Section 4.4 for more details). Public subnets will receive 
their share of rewards based on the delegation-weighted voting mechanism at every voting 
epoch. Funds received by subnets are split to reward Subnet Owners, Validators and 
Contributors based on each subnet’s predefined allocation rules.  
 



 

 
Fig 4: Flowchart showing the major milestones from creation to the ongoing running of a public subnet 
 
4.3.2 ENTs and Contributors 
Once subnets are spun up, contributors can join subnets to participate in the defined forms 
of verifiable work. For human contributors, this can be as simple as taking on tasks available 
from the various subnets (e.g. teleoperating a robot) using a wallet as an identifier. For robot 
contributors, they first need to be registered with an ENT NFT. Robot owners (who own ENT 
NFTs) will be able to participate in multiple relevant subnets while maximizing the utilization 
rate of each physical robot. 
 

 
Fig 5: Flowchart showing the major milestones for adding a robotic resource to a subnet 

 



 

4.4 IP Assignment and Ownership 
Datasets and Models produced by public subnets (emission-receiving) in the BitRobot 
Network are by default open-sourced for non-commercial use. 
 
Any datasets or models produced by private subnets (non-emissions receiving) do not fall 
under this regime. 

4.5 Governance 

 

BitRobot Foundation 
The BitRobot Foundation’s mission is to advance Embodied AI research by facilitating the 
growth of the BitRobot Network.  
 
To achieve this mission, the BitRobot Foundation will help grow and support infrastructure 
development work (e.g. tracking of work done by individual ENTs, networking support for 
subnets working on teleoperation, data pipeline support for subnets working on datasets 
generation, etc), providing administrative support for the Senate and evangelizing work (e.g. 
hackathons, grant administrations, etc), and supporting grants to develop the supporting 
ecosystem.  
 
The BitRobot Foundation will also take on more Embodied AI research and engineering work 
over time in order to fully maximize the research and economic impacts arising from the 
commercial use of its IPs (datasets or AI models).  

BitRobot Senate 
​
The BitRobot Senate is composed of nominated representatives of the broader 



 

cryptocurrency and Embodied AI research communities - aimed at ensuring resources flow 
towards the subnets creating the highest value. The BitRobot Senate governs economic 
weights associated with network measurements (see Section 5.1 below) which are used to 
evaluate the value of the outputs generated by the subnets. 
 
At regular intervals (called “Voting Epochs”), the BitRobot Senate will vote on the inclusion of 
new robotic subnets for emissions. At the same time, the BitRobot Senators will also 
individually vote on the weights proposals for network distributions assigned to each robotic 
subnet based on the performance and value contribution from the individual subnet to the 
overall network.  

Gandalf AI 
 
The BitRobot Foundation will develop and operate “Gandalf AI”, an ongoing effort to create a 
fully open-sourced AI agent model that provides weights proposals for network 
measurements and distributions for each robotic subnet, serving as a counter balance to the 
economic influence wielded by the Senate. 

Network Participants​
​
BitRobot Network participants can directly influence the impact of decisions made by 
Senators and Gandalf AI via delegation of their voting power. In this way, the participants 
can provide a check on any individual senator by allocating more decision making power 
with other senators or in an extreme case - entirely allocating decision making power to 
Gandalf AI.  

5. BitRobot Economy 
The BitRobot Economy is composed of a diverse set of participants from all stages of the 
value creation pipeline (early research, fundamental development, productionisation). The 
structure of the BitRobot economy aims to support all of these participants by balancing the 
flows of the economy across the different types of contribution to the value chain. 

5.1 Economic Flows to Subnets 
 
The BitRobot Senate and Gandalf AI will use a Measurement-Evaluation-Rewards (MER) 
loop to determine how emissions should be allocated between subnets. As described in the 
next section, BitRobot Network participants can increase (or decrease) the relative power of 
the BitRobot Senate or Gandalf AI’s votes via delegation. 
 
Measurements: Defined via protocol governance, these are the metrics (and its relevant 
calculation) that subnets will be evaluated against. For example, a measurement may apply 
to a specific subnet (e.g. “Qualified Miles” for Subnet 1) or a more generic measurement that 
could be relevant to multiple subnets (e.g. number of rented humanoid robots). Members of 



 

the Senate and Gandalf AI will individually assign weights to each measurement, indicating 
their opinion of the relative importance of each metric against the rest. 
 
Evaluation: Members of the Senate and Gandalf AI will individually evaluate subnets 
against each of the relevant metrics to create a distribution list per Member based on their 
own assessment. 
 
Reward: Each Senator and Gandalf AI’s distribution lists are weighted by their delegations, 
summed, and normalized to produce the distribution for that epoch of emissions to each 
subnet. 
 
Specifically, 
 

 : Weighted delegations to Gandalf AI or Senator j 
 
 : New emissions in Voting Epoch l 
 
 : Evaluation weight % of Measurement i, submitted by Senator j 
 
 : Measurement i, achieved by the relevant Subnet k  
 

Therefore, the amount of rewards distributed to Subnet k during epoch l, will be: 
 

 
 
Emissions flowing to each subnet are then distributed between Owners, Contributors, and 
Validators against the Verifiable Robotic Work rules defined by each subnet.  
 

5.2 Economic Consumption 
 
There are several areas where the BitRobot Network requires forms of economic 
consumption. Some of these areas are described below, but we envision more use cases to 
be defined by the community as the BitRobot Network matures. 

Fee Payment 

Subnet Registration Fees: These are fees paid per epoch by Subnet Owners to maintain 
an active subnet. Subnet Registration Fees create an economic cost for joining the BitRobot 
economy to prevent spam.  

ENT Registration Fees: These fees are paid per epoch by owners of Robots upon 
registering new robots into the BitRobot economy. 

https://www.codecogs.com/eqnedit.php?latex=%5C%5B%5Csum_j%20%5Cleft(%20%5Cfrac%7BD_j%20%5Ccdot%20N_l%20%5Ccdot%20E_%7Bij%7D%7D%7B%5Csum_j%20D_j%7D%20%5Ccdot%20%5Cfrac%7BM_%7Bik%7D%7D%7B%5Csum_k%20M_%7Bik%7D%7D%5Cright)%5C%5D#0


 

Resource Allocation Fees: These fees are calculated as a small percentage of the revenue 
paid to Subnet Owners when third parties rent resources via subnets in the BitRobot 
ecosystem.  

Licensing Fees: These are fees paid by third parties to commercially license the data or 
assets stewarded by the BitRobot Foundation. 

Penalties: These are fees paid by any participant when violating conditions of the BitRobot 
Network or relevant subnets.​
​
Collateral 

Different components of the BitRobot Network (e.g. ENTs) may require economic collateral 
to be attached to ensure accountability and enable penalties for malicious actors that might 
attempt to abuse the BitRobot Network.  

Delegating 

BitRobot Network participants may delegate voting power to the BitRobot Senate or Gandalf 
AI, increasing the weight of the delegatee’s votes in determining how BitRobot Network 
emissions are steered to subnets.  

5.3 Economic Loops 
 
There are two primary economic loops in the BitRobot Ecosystem:  

​
 
In the first economic loop, the network rewards are used to acquire useful robotic resources. 
This can be seen as assembling markets of resources (which may include any useful 
resource from compute to physical robots to teleoperator man-hours, etc) that can be 
consumed by any third-party. Thus network utilization incurs a fee, to balance the emissions 
and utilization. ​
​
Example: An AI lab hires a fleet of sidewalk robots to evaluate their latest model. The AI lab 
will pay a resource allocation fee to the network, with the remaining funds being allocated to 
the hardware owners (via the subnet’s definition of Verifiable Robotic Work) whose robots 
are used in the evaluation of the model. ​
 



 

In the second economic loop, the network rewards are used to both acquire a useful robotic 
resource, and create a useful output (e.g. dataset or AI model). When that output is licensed, 
the fees are used to support the BitRobot ecosystem. ​
​
Example: An AI lab wants to commercially license the robotic arm dataset created by the 
BitRobot Network. The license fees are used to support the BitRobot ecosystem. 

6. Future Work 
We have presented the BitRobot Network as a powerful framework for creating clusters of 
resources to accelerate Embodied AI. Below are areas BitRobot Network participants may 
consider for ongoing improvement:  
 
Augmenting Verifiable Robotic Work With Cryptographic Proofs: At launch, the 
BitRobot Network will focus on Verifiable Robotic Work - a looser constraint (public inputs, 
public outputs, public transformations) that allows the BitRobot Network to address a wider 
swath of data collection, processing, and transformation - than what might be economically 
feasible given the state of zero knowledge protocols today. As the cost curves drop, we 
envision incorporating cryptographic guarantees to strengthen the economic loops in the 
ecosystem.  
 
Markets and Services on top of Network Resources: We envision more sophisticated 
interactions being built by BitRobot Network participants on top of the primitives inside of the 
BitRobot economy. As the BitRobot Network stabilises the capital flows moving through the 
economy, we envision markets and services to form to improve the capital efficiency for 
providers on the BitRobot Network.​
​
Growing the Ecosystem: BitRobot is maximally useful when it becomes the global hub for 
talent, manufacturer, service providers, research labs, and AI companies to coordinate their 
resources against tasks that accelerate Embodied AI. A critical focus will be expanding the 
scope of participants to accelerate the flywheel of growth in the ecosystem. ​
 
AI Agent Controlled Resources: A key feature of designing the BitRobot Network to be 
protocol first is in enabling AI Agents to control physical resources. We expect enabling 
composability between the BitRobot Network and AI agents to be a continuing focus as the 
BitRobot Network scales and AI agents mature.  
 
Evolving Governance: At launch, we expect the BitRobot Foundation and the Senate to 
play important roles in helping bootstrap the BitRobot Network and helping steer the flywheel 
for growth for the BitRobot Network. As the BitRobot Network matures, we expect more 
responsibilities to transition directly between BitRobot Network participants and Gandalf AI.  

7. References 
 



 

1.​ Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. 
Gomez, Lukasz Kaiser, Illia Polosukhin. 2017. Attention is all you need. 
https://arxiv.org/abs/1706.03762 

2.​ Akash Ghosh, Arkadeep Acharya, Sriparna Saha, Vinija Jain, Aman Chadha. 2024. 
Exploring the Frontier of Vision-Language Models: A Survey of Current 
Methodologies and Future Directions https://arxiv.org/abs/2404.07214 

3.​ Yueen Ma, Zixing Song, Yuzheng Zhuang, Jianye Hao, Irwin King. 2024. A Survey on 
Vision-Language-Action Models for Embodied AI https://arxiv.org/abs/2405.14093 

4.​ Julen Urain, Ajay Mandlekar, Yilun Du, Mahi Shafiullah, Danfei Xu, Katerina 
Fragkiadaki, Georgia Chalvatzaki, Jan Peters. 2024. Deep Generative Models in 
Robotics: A Survey on Learning from Multimodal Demonstrations 
https://arxiv.org/abs/2408.04380 

5.​ Yecheng Jason Ma, William Liang, Hung-Ju Wang, Sam Wang, Yuke Zhu, Linxi Fan, 
Osbert Bastani, Dinesh Jayaraman. 2024. DrEureka: Language Model Guided 
Sim-To-Real Transfer https://arxiv.org/abs/2406.01967 

6.​ Jiaxu Xing, Ismail Geles, Yunlong Song, Elie Aljalbout, Davide Scaramuzza. 2024. 
Multi-Task Reinforcement Learning for Quadrotors https://arxiv.org/abs/2412.12442 

7.​ Anthony Hu, Lloyd Russell, Hudson Yeo, Zak Murez, George Fedoseev, Alex 
Kendall, Jamie Shotton, Gianluca Corrado. 2023. GAIA-1: A Generative World Model 
for Autonomous Driving https://arxiv.org/abs/2309.17080 

8.​ World Labs. 2024. Generating worlds. https://www.worldlabs.ai/blog 
9.​ Nvidia. 2025. Nvidia Cosmos. https://www.nvidia.com/en-us/glossary/world-models 
10.​Stone Tao, Fanbo Xiang, Arth Shukla, Yuzhe Qin, Xander Hinrichsen, Xiaodi Yuan, 

Chen Bao, Xinsong Lin, Yulin Liu, Tse-kai Chan, Yuan Gao, Xuanlin Li, Tongzhou Mu, 
Nan Xiao, Arnav Gurha, Zhiao Huang, Roberto Calandra, Rui Chen, Shan Luo, Hao 
Su. 2024. ManiSkill3: GPU Parallelized Robotics Simulation and Rendering for 
Generalizable Embodied AI https://arxiv.org/abs/2410.00425 

11.​Zhou Xian, Yiling Qiao, Zhenjia Xu, Tsun-Hsuan Wang, Zhehuan Chen, Juntian 
Zheng, Ziyan Xiong, Yian Wang, Mingrui Zhang, Pingchuan Ma, Yufei Wang, Zhiyang 
Dou, Byungchul Kim, Yunsheng Tian, Yipu Chen, Xiaowen Qiu, Chunru Lin, Tairan 
He, Zilin Si, Yunchu Zhang, Zhanlue Yang, Tiantian Liu, Tianyu Li, Kashu Yamazaki, 
Hongxin Zhang, Huy Ha, Yu Zhang, Michael Liu, Shaokun Zheng, Zipeng Fu, Qi Wu, 
Yiran Geng, Feng Chen, Milky, Yuanming Hu, Guanya Shi, Lingjie Liu, Taku Komura, 
Zackory Erickson, David Held, Minchen Li, Linxi "Jim" Fan, Yuke Zhu, Wojciech 
Matusik, Dan Gutfreund, Shuran Song, Daniela Rus, Ming Lin, Bo Zhu, Katerina 
Fragkiadaki, Chuang Gan. 2024. Genesis: A Generative and Universal Physics 
Engine for Robotics and Beyond https://genesis-embodied-ai.github.io/ 

12.​Kevin Zakka, Baruch Tabanpour, Qiayuan Liao, Mustafa Haiderbhai, Samuel Holt, 
Jing Yuan Luo, Arthur Allshire, Erik Frey, Koushil Sreenath, Lueder A. Kahrs, 
Carmelo Sferrazza, Yuval Tassa, Pieter Abbeel. 2025. MuJoCo Playground 
https://playground.mujoco.org/assets/playground_technical_report.pdf 

13.​Shikhar Bahl, Russell Mendonca, Lili Chen, Unnat Jain, Deepak Pathak. 2023. 
Affordances from Human Videos as a Versatile Representation for Robotics 
https://arxiv.org/abs/2304.08488 

14.​Ruijie Zheng, Yongyuan Liang, Shuaiyi Huang, Jianfeng Gao, Hal Daumé III, Andrey 
Kolobov, Furong Huang, Jianwei Yang. 2024. TraceVLA: Visual Trace Prompting 
Enhances Spatial-Temporal Awareness for Generalist Robotic Policies 
https://arxiv.org/abs/2412.10345 

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2404.07214
https://arxiv.org/abs/2405.14093
https://arxiv.org/abs/2408.04380
https://arxiv.org/abs/2406.01967
https://arxiv.org/abs/2412.12442
https://arxiv.org/abs/2309.17080
https://www.worldlabs.ai/blog
https://www.nvidia.com/en-us/glossary/world-models
https://arxiv.org/abs/2410.00425
https://genesis-embodied-ai.github.io/
https://playground.mujoco.org/assets/playground_technical_report.pdf
https://arxiv.org/abs/2304.08488
https://arxiv.org/abs/2412.10345


 

15.​Juntao Ren, Priya Sundaresan, Dorsa Sadigh, Sanjiban Choudhury, Jeannette Bohg. 
2025. Motion Tracks: A Unified Representation for Human-Robot Transfer in 
Few-Shot Imitation Learning. https://arxiv.org/abs/2501.06994 

16.​Open-X Embodiment authors. 2024. Open X-Embodiment: Robotic Learning 
Datasets and RT-X Models. https://arxiv.org/abs/2310.08864 

17.​Lawrence Yunliang Chen, Kush Hari, Karthik Dharmarajan, Chenfeng Xu, Quan 
Vuong, Ken Goldberg. 2024. Mirage: Cross-Embodiment Zero-Shot Policy Transfer 
with Cross-Painting https://arxiv.org/abs/2402.19249 

18.​Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, 
Niccolo Fusai, Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim 
Jones, Liyiming Ke, Sergey Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl 
Pertsch, Lucy Xiaoyang Shi, James Tanner, Quan Vuong, Anna Walling, Haohuan 
Wang, Ury Zhilinsky. 2024. π0: A Vision-Language-Action Flow Model for General 
Robot Control https://www.physicalintelligence.company/download/pi0.pdf 

19.​Kevin Black. 2024. From Octo to π0: How to train your generalist robot policy. 
https://www.youtube.com/live/ELUMFpJCUS0?si=3hKJD8C9qpFQokHd&t=16864 

https://arxiv.org/abs/2501.06994
https://arxiv.org/abs/2310.08864
https://arxiv.org/abs/2402.19249
https://www.physicalintelligence.company/download/pi0.pdf
https://www.youtube.com/live/ELUMFpJCUS0?si=3hKJD8C9qpFQokHd&t=16864

	 
	 
	The BitRobot Network 
	Whitepaper 
	Michael Cho, Jonathan Victor, Juan Benet 
	Mar 10, 2025 

	Table of Contents 
	1. Abstract 
	2. Introduction  
	3. Problem Definition 
	4. The BitRobot Network: Design and Protocol 
	5. BitRobot Economy 
	6. Future Work 
	7. References 


	 
	1. Abstract 
	2. Introduction 
	3. Problem Definition  
	3.1 Data Challenges 

	Fig 1: Rough mapping of resource access for key players in the Embodied AI landscape.  
	4. The BitRobot Network: Design and Protocol 
	4.1 Overview of the BitRobot Network 
	4.2 Key Components of the BitRobot Network 
	4.3 Life cycles of Subnets and Contributors 
	4.4 IP Assignment and Ownership 
	4.5 Governance 
	BitRobot Foundation 
	BitRobot Senate 
	Gandalf AI 
	Network Participants​​BitRobot Network participants can directly influence the impact of decisions made by Senators and Gandalf AI via delegation of their voting power. In this way, the participants can provide a check on any individual senator by allocating more decision making power with other senators or in an extreme case - entirely allocating decision making power to Gandalf AI.  


	5. BitRobot Economy 
	5.1 Economic Flows to Subnets 
	5.2 Economic Consumption 
	5.3 Economic Loops 

	6. Future Work 
	7. References 

